DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

Junyang LIN

linjunyang@pku.edu.cn

https://justinlin610.github.io

Deep Learning: A Sub-field of Machine Learning

Artificial Intelligence

A pretty large field

Machine Learning

Perceptron, Logistic Regression, SVM, Kmeans...

Deep Learning

MLP, CNN, RNN, GAN...

Deep Learning is Becoming Popular

Growing Use of Deep Learning at Google

Deep Learning is Powerful

Deep Learning is Powerful (Machine Translation)

INF0:tensorflow:Restoring parameters from checkpoints/dev
Input
 Word Ids: [185, 171, 4, 89, 136, 68, 114]
 English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']
Prediction
 Word Ids: [209, 4, 130, 320, 229, 168, 308, 312, 1]

French Words: il a vu un vieux camion jaune . <EOS>

Deep Learning is Powerful (Summarization)

Text	仔细一算,上海的互联网公司不乏成功案例,但最终成为BAT一类巨头的几乎没有,这也能解释为何纳税百强的榜单中鲜少互联网公司的身影。有一类是被并购,比如:易趣、土豆网、PPS、PPTV、一号店等;有一类是数年偏安于细分市场。
	With careful calculation, there are many successful Internet companies in Shanghai, but few of them becomes giant company like BAT. This is also the reason why few Internet companies are listed in top hundred companies of paying tax. Some of them are merged, such as Ebay, Tudou, PPS, PPTV, Yihaodian and so on. Others are satisfied with segment market for years.
Reference	为什么上海出不了互联网巨头? Why Shanghai comes out no giant company?
Seq2seq-A	上海的互联网巨头。 Shanghai's giant company.
SRB	上海鲜少互联网巨头的身影。 Shanghai has few giant companies.

https://arxiv.org/abs/1706.02459

Deep Learning is Powerful (Object Recognition)

Deep Learning is Powerful (Face Generation)

Deep Learning is Powerful (Pokemon Generation)

Deep Learning is Powerful (Cat Generation)

Deep Learning is Powerful (Cat Generation)

History of Deep Learning

Ups and Downs

- 1958: Perceptron Learning Algorithm (Rosenblatt, linear model, limited)
- 1980s: Multi- layer Perceptron (MLP, non-linear, not fancy)
- 1986: Backpropagation (G. Hinton et al., but not efficient when deep)
- 1990s: SVM vs Neural Network (Yann LeCun, CNN)
- 2006: RBM Initialization (G. Hinton et al., Breakthrough)
- 2009: GPU
- 2011: Started to be popular in Speech Recognition
- 2012: AlexNet won ILSVRC (Deep Learning Era started)
- 2014: Started to become very popular in NLP (Y. Bengio, RNN...)

Great Figures

What is Deep Learning?

The Essence of Machine Learning

Linear Regression (Housing Price)

$$z = wx + b$$
$$f(z) = \max(0, z)$$

Size (x)

Perceptron

$$z = w_1 x_1 + w_2 x_2 + b = w^T x + b$$

 $f(z) = sign(z)$

Height (x_1)

Logistic Regression

$$z = w^{T}x + b$$

$$g(x) = \sigma(z) = \frac{1}{1 + e^{-z}} (g(z) \in (0, 1))$$

Height (x_1)

Housing Price Prediction

Should you study linguistics?

"Deep" means many hidden layers

Input Layer Hidden Layer 1 Hidden Layer 2 ... Hidden Layer n Output Layer

Activation Unit

If there is no operation in the activation unit, the whole model will be a linear model.

Therefore, the effects of multi-layer NN will be equivalent to those of single-layer NN. This is why we need non-linear activation function in the activation unit.

Activation Function

+ 747 0000, 64, /2 *

2001./2 +

"Deep" means many hidden layers

How can you find the best function?

Oh my god! No line can best separate the data!

Don't worry! Neural Network can help you solve the problem!

XNOR

x ₁	x ₂	a ₁ ¹	a ₂ ¹	0 ₁
0	0	0	1	1
1	0	0	0	0
0	1	0	0	0
1	1	1	0	1

Gradient Descent

Loss Function: $L = \frac{1}{N} \sum_{i=1}^{i} \frac{1}{2} (y_i - \hat{y}_i)^2$

Objective: minimize the total loss $w \leftarrow w - \alpha \cdot \frac{\partial L}{\partial w}$

(Here a is learning rate, which controls the range of each step)

Gradient Descent

Backpropagation (Chain Rule)

Deep Learning Frameworks

TensorFlow PYTORCH

Word Embedding

Discrete Representation

- Commonest Linguistic Idea: *signifier* and *signified* (Saussure)
- One-Hot Encoding can represent word. It is a vector with only one 1 and a lot of 0s.
- For example: *Hotel*

[00000000010000]

http://web.stanford.edu/class/cs224n

Problems with Discrete Representation

- It has no relation to the meaning of word
- Similar word vectors should have large inner product. But

• We need a better solution to represent word meaning

http://web.stanford.edu/class/cs224n

Distributed Representation

• You shall know a word by the company it keeps.

(J. R. Firth, 1957)

- Word Embedding can build distributed representations for words.
- Two of the most famous word embedding methods are:
- Word2Vec (Skip-Grams, CBOW)
- GloVe (Global Vector)

http://web.stanford.edu/class/cs224n

http://web.stanford.edu/class/cs224n

Popular Networks

Convolutional Neural Network

Convolutional Neural Network (CNN)

Fully-connected Feedforward Neural Network

Convolutional Neural Network

Convolutional Layer

Image

Convolved Feature

Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Activations of CNN

Recurrent Neural Network

Any Problem in Fully-connected Network?

X₁ W_1 a_{1}^{1} **0**₁ Destination N_1 **X**₂ W_2 Beijing Departure N_2 a_{2}^{1} **0**₂ W_3 **X**3 Other N_3 a_{3}^{1} **0**₃ W_4 **X**₄

Recurrent Neural Network (RNN)

http://web.stanford.edu/class/cs224n

RNN vs Language Model

$$h_t = \sigma \left(W^{(hh)} h_{t-1} + W^{(hx)} x_{[t]} \right)$$
$$\hat{y}_t = \operatorname{softmax} \left(W^{(S)} h_t \right)$$

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

http://web.stanford.edu/class/cs224n

Why Deep Learning?

Machine Learning vs Deep Learning

Machine Learning

Human-designed representations + Input features + Pick the best weights Deep Learning

Representation Learning + Raw Inputs + Pick the best algorithm

Advantages of Deep Learning

- Feature engineering is hard and to some extent, ineffective, incomplete or over-specified and it is really a hard work!
- Deep learning can learn features, which are easy to adapt and fast to learn.
- Flexible, universal and learnable
- More data and more powerful machines

Advantages of Deep Learning

<u>Scale</u> drives deep learning progress

From Andrew Ng's course "Deep Learning"

Future for Deep Learning?

- Unsupervised learning may be the most important research area in the future since it is pretty easy to achieve a large amount of unlabeled data while labelled data are far fewer and pretty expensive.
- Transfer Learning can help us transfer the task to pre-trained models
- Generative Model, such as GAN (Generative Adversarial Network)
- Abandon it?! (Well, Hinton said we should drop BP...)

Personal Ideas About What We Can Do

- It seems that now linguists' contribution to NLP becomes trivial and deep learning does not really need us, but things may not be that bad.
- Still, we find the effects of many NLP tasks, like machine translation, not satisfactory, and machines cannot really understand semantic meaning, let alone pragmatic.
- More significant problems for scientists to solve in today's world, instead of improving the performance of algorithms, which are though vital.

References

Book:

Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MIT press, 2016.

http://www.deeplearningbook.org/

https://github.com/exacity/deeplearningbook-chinese

Article:

LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-117.

Goldberg Y. A Primer on Neural Network Models for Natural Language Processing[J]. J. Artif. Intell. Res.(JAIR), 2016, 57: 345-420.

Talk is Cheap, Show me the Code!

```
class NeuralNetwork(object):
    def sigmoid(self, x):
        return 1/(1 + np.exp(-x))
```

```
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
    # Set number of nodes in input, hidden and output layers.
    self.input_nodes = input_nodes
    self.hidden_nodes = hidden_nodes
    self.output_nodes = output_nodes
```

```
self.lr = learning_rate
```

Activation function is the sigmoid function
self.activation_function = self.sigmoid

```
def train(self, inputs_list, targets_list):
    # Convert inputs list to 2d array, column vector
    inputs = np.array(inputs_list, ndmin=2).T
    targets = np.array(targets_list, ndmin=2).T
```

```
#### Implement the forward pass here ####
#### Forward pass ###
#Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
```

```
#Output layer
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs)
final_outputs = final_inputs
```

Implement the backward pass here
Backward pass

```
# 1 is the gradient of f'(x) where f(x) = x
output_delta = (targets - final_outputs) * 1
```

hidden_delta = np.dot(self.weights_hidden_to_output.T, output_delta) * hidden_outputs * (1-hidden_outputs)

```
# TODO: Update the weights
self.weights_hidden_to_output += self.lr * np.dot(output_delta, hidden_outputs.T)
self.weights_input_to_hidden += self.lr * np.dot(hidden_delta, inputs.T)
```

```
#predict with a inputs_list
def run(self, inputs_list):
    # Run a forward pass through the network
    inputs = np.array(inputs_list, ndmin=2).T
```

```
#### Implement the forward pass here ####
#Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
```

```
#Output layer
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs)
final_outputs = final_inputs
```

return final_outputs